The derivation process of finding three conclusions of function periodicity!

1、f(x+a)=-f(x)

Then f (x+2a) = f [(x+a)+a] =-f (x+a) =-[-f (x)] = f (x)

So f(x) is a periodic function with a period of 2a.

2、f(x+a)= 1/f(x)

Then f (x+2a) = f [(x+a)+a] =1/f (x+a) =1[1/f (x)] = f (x).

So f(x) is a periodic function with a period of 2a.

3、f(x+a)=- 1/f(x)

Then f (x+2a) = f [(x+a)+a] =-1/f (x+a) =1[-1/f (x)] = f (x).

So f(x) is a periodic function with a period of 2a.

So we got these three conclusions.

Extended data

Important inference:

1. If the function f(x)(x∈D) has two symmetry axes in the domain, x=a and x=b, then the function f(x) is a periodic function, and the period T=2|b-a| (not necessarily the minimum positive period).

2. If the function f(x)(x∈D) has two symmetrical centers A(a, 0) and B(b, 0) in the definition domain, then the function f(x) is a periodic function, and the period T=2|b-a| (not necessarily the minimum positive period).

3. If the function f(x)(x∈D) has an axis of symmetry x=a and a center of symmetry B(b, 0)(a≠b), then the function f(x) is a periodic function with a period T=4|b-a| (not necessarily the minimum positive period).

References:

Baidu Encyclopedia with Periodic Function